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1. Introduction

High-voltage thin-film transistors (HVTFTs) and high-voltage 
diodes (HVDs) are indispensable elements in the driving cir-
cuits of various displays, including ferroelectric liquid crystals 
displays [1], electrophoretic displays [2], electro-optical dis-
plays [3], field emission displays [4] and braille displays [5, 
6], as well as in the readout circuits of x-ray imaging sensors 
[7]. Recently, potential applications of HVTFTs and HVDs 
in energy management for energy harvesting systems were 

demonstrated in building integrated photovoltaics (BIPVs) 
[8] and triboelectric nanogenerators (TENGs) [9], respec-
tively. To avoid breakdown occurrence in these crucial HV 
devices, the electric potential need to descend across a suf-
ficient length along either vertical or horizontal directions. In 
the vertical case, thick insulator layers are employed to sus-
tain high voltage drop in HVTFTs [10, 11] and HVDs [12]; 
while in the horizontal situation, offset regions are introduced 
[5, 13–18]. The offset solution is superior to the thick gate 
di electric alternative, in virtue of its larger gate capacitance 
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Abstract
High-voltage devices, working in the range of hundreds of volts, are indispensable elements in 
the driving or readout circuits for various kinds of displays, integrated microelectromechanical 
systems and x-ray imaging sensors. However, the device performances are found hardly 
uniform or repeatable due to the misalignment issue, which are extremely common for offset 
drain high-voltage devices. To resolve this issue, this article reports a set of self-aligned 
photolithography technology for the fabrication of high-voltage devices. High-performance 
fully-transparent high-voltage thin film transistors, diodes and logic inverters are successfully 
fabricated with this technology. Unlike other self-aligned routes, opaque masks are introduced 
on the backside of the transparent substrate to facilitate proximity exposure method. The 
photolithography process is simulated and analyzed with technology computer aided design 
simulation to explain the working principle of the proximity exposure method. The substrate 
thickness is found to be vital for the implementation of this technology based on both 
simulation and experimental results. The electrical performance of high-voltage devices is 
dependent on the offset length, which can be delicately modulated by changing the exposure 
dose. The presented self-aligned photolithography technology is proved to be feasible in high-
voltage circuits, demonstrating its huge potential in practical industrial applications.
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and thus better gate control capability. As a critical device 
parameter, the offset length determines the magnitude of the 
on-state current (ION) and breakdown voltage (VBR). In most 
cases, an increase of the offset length will lead to the increase 
of VBR and decease of ION, and vice versa [5, 9, 14, 15, 19]. 
However, it is hard to precisely control the offset length, due 
to the significant misalignment issue [19–22] during the pat-
terning of drain and gate electrodes. That will result in a poor 
uniformity and repeatability of the device performance in 
offset drain HVTFTs and HVDs.

This work presents a kind of self-aligned photolithog-
raphy technology for the fabrication of offset drain high-
voltage devices, aiming to solve the misalignment issue. 
High-performance fully-transparent HVTFTs, HVDs and 
HV inverters are successfully fabricated using this method. 
Besides regular current–voltage (I–V) tests, the uniformity 
of the self-aligned HVTFTs is also examined. The principle 
of the self-aligned photolithography is studied with optical 
simulation. Furthermore, by modulating the exposure dose, 
the offset length, and thus the device performance, can be 
precisely controlled. Finally, HV inverters with an HVTFT 
drive and an on-chip HVD load are constructed and evaluated, 
demonstrating the feasibility of the presented technology in 
high-voltage circuits.

2. Experiments

2.1. Device fabrication

The fabrication procedure of the self-aligned photolithog-
raphy process is illustrated in figure 1(a). Step 1: chromium 
(Cr, 50 nm thick) pattern was deposited onto the backside of 

a glass substrate (170 µm thick). Step 2: gallium zinc oxide 
(GZO, 100 nm thick) gate electrode layer was deposited onto 
the front of the substrate. Step 3: AZ6130 positive photoresist 
pattern was formed after exposure from the backside direc-
tion using the Cr pattern as mask (UV 365 nm, dose  =  120 
mJ cm−2). Step 4: the gate electrode was formed after wet 
etching of GZO using photoresist as the mask. Step 5: the 
alumina (Al2O3, 100 nm thick) dielectric layer was depos-
ited via atomic layer deposition (ALD) at 100 °C with tri-
methylaluminum (TMA) and water as precursors. Step 6: the 
zinc oxide (ZnO, 40 nm thick) channel layer was deposited 
via radio frequency magnetron sputtering (rf-MS) at room 
temperature in Ar/O2 mixed atmosphere with a power of 70 
W (2 inch target) and pressure of 0.4 Pa and patterned by 
photolithography and wet etching in 1% HCl for 3 s. Step 7: 
the same AZ6130 photoresist was coated. Step 8: the photo-
resist pattern was formed after exposure from the backside 
direction with a smaller dose of 90 mJ cm−2 and develop-
ment. Step 9: the GZO (100 nm thick) source/drain electrode 
layer was deposited onto the front side. Step 10: photoresist 
and the GZO on it was removed after lift-off. Step 11: the 
same AZ6130 photoresist was coated and patterned by pho-
tolithography. Step 12: wet etching of GZO and stripping 
of photoresist. Step 13: self-aligned inverter was completed 
after opening the contact via-hole and shorting the gate and 
drain of the HVD. The fabrication process was also depicted 
in detail with the micro-photographs and optical simulation 
in supporting information (stacks.iop.org/JPhysD/51/175102/
mmedia) S1 and S2, respectively. Note that special attention 
should be taken to avoid contamination or scratching of Cr 
mask during the fabrication. Upon completing the fabrication, 
the devices were then post-annealed at 300 °C in air for 1 h.

Figure 1. (a) A typical fabrication procedure of self-aligned HV inverters. (b) Structure diagram of a completed self-aligned HV inverter, 
which contains an HVTFT drive and an HVD load. (c) Cross-sectional view of an HVTFT. (d) Optical microscope image of a self-aligned 
HV inverter. (e) Local enlarged image of an HVTFT which shows the offset region between gate and drain. (f) Optical transmittance 
spectra of a completed 25  ×  25 mm2 wafer and all the transparent materials involved in the fabrication. The inset is the photograph of the 
fully-transparent device on the screen of a phone.
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2.2. Device characterization

I–V characteristics measurements in figures  2(a), 4(c) and 
5(b) are performed in a dark air at room temperature using 
source-measurement unit included in Keithley 4200 semi-
conductor characterization system. Other I–V characteristics 
of the HVTFTs and the voltage-transfer characteristics of 
the HV inverters are performed by a self-assembled I–V test 
system with a Keithley 6487 picoammeter and two Keithley 
2400 source meters. The transient response measurement in 
figure  S3 is performed with a square wave generated by a 
Keithley 3390 function generator and recorded by a Tektronix 
TDS1000B-SC oscilloscope via P2220 passive voltage 
probes (resistance  =  10 MΩ). The transmittance spectra in 
this report are obtained with a SHIMADZU UV 3600 plus 
spectrophotometer.

2.3. TCAD simulation

The process simulations are performed by ATHENA_Optlith 
simulator included in the Silvaco TCAD software. The mask 

in the simulation shares the same size with that in the experi-
ments. The exposure light is i line of mercury lamp (UV 
365 nm). The electric field simulations are performed by 
ATLAS simulator. A nonlinear mesh was defined to accu-
rately characterize the parameters in active areas while 
coarsely elsewhere. On this basis, a ZnO layer (40 nm thick, 
energy gap Eg  =  3.37 eV, affinity χ  =  4.5 eV) and an Al2O3 
layer (100 nm thick, dielectric constant εr  =  9.3) were defined 
to serve as the channel and dielectric layers, respectively, with 
the conductor (work function ΦM  =  4.33 eV) serving as con-
tact electrodes. Fermi–Dirac statistics model was used to get a 
precise description of electrons in thermal equilibrium.

3. Results and discussion

3.1. Device structure

After the self-aligned photolithography process (figure 1(a)), 
the HV inverter is constructed with an HVTFT drive and an 
HVD load as shown in figure 1(b). The cross-sectional view 
(figure 1(c)) shows the structure diagram of the HVTFT, in 

Figure 2. (a) Transfer characteristics of an HVTFT with on/off ratio over 107 and ultra-low off-state current below 10−15 A µm−1. (b) 
Summary of transfer curves of 156 HVTFTs on one wafer. (c) Wafer map of on-state current over a 25  ×  25 mm2 glass substrate. (d) 
Output characteristics of an HVTFT indicating its capability of regulating current at high voltage. (e) Summary of output curves of the 156 
HVTFTs. (f) Wafer map of kink voltage. (g) One output curve with VGS  =  0, in which there are linear, saturation and kink effect regions. 
Inset shows the microscope image of a burned-out device, with the burned region locating between the drain and gate. (h) TCAD simulation 
of the electric field strength, indicating that the weak points located near the gate and drain electrodes edges. (i) Statistics of on-state current 
and kink voltage values from 156 devices. The uniformity is improved with the presented self-aligned photolithography technology.
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which the channel length is almost the same as the Cr mask, 
while the gate length is shorter due to the overexposure in step 
3. The length distance between the gate and the drain forms an 
offset region, which is of particular importance to the device 
performance. Figure  1(d) shows an optical microscope pic-
ture of one completed HV inverter. Figure 1(e) shows a local 
enlarged picture of the HVTFT, in which the offset length is 
approximately 2 µm. Finally, after removal of the Cr mask 
with ammonium ceric nitrate [(NH4)2Ce(NO3)6] solution, the 
device becomes fully-transparent in visible spectrum range 
with a high transmittance over 80% (figure 1(f)).

3.2. Electrical performance uniformity

Figure 2(a) shows the transfer curves of an HVTFT (2 µm 
offset) with a high on/off ratio over 107 as well as a low off-state 
current (IOFF) below 10−15 A µm−1, which guarantees ultra-
low standby power dissipation in various applications [23]. 
The transfer curves of a total of 156 devices on one wafer are 
summarized in figure 2(b). Figure 2(c) shows the wafer map of 
ION over a 25  ×  25 mm2 glass substrate with an average value 

of 1.5 µA and standard deviation (σ) of 0.61 µA (figure 2(i)). 
Figure 2(d) shows the output curves with maximum VDS of 110 
V and VGS from 0 to 30 V in 1 V step, indicating the capability 
of regulating current at high voltage. Unlike the conventional 
low-voltage TFTs [24, 25], the output curve has three distin-
guishable regions: the linear, saturation and kink-effect regions 
(figure 2(g)). At VDS lower than 90 V, the HVTFT goes through 
the linear region and then the saturation region as conventional 
TFTs, while at VDS higher than 90 V, kink effect occurs and IDS 
starts to increase exponentially with VDS. Further increase of 
VDS leads to a combined effect of kink effect and self-heating 
[15, 26], which ultimately leads to the breakdown of device 
as shown in the inset of figure  2(g). Technology computer 
aided design (TCAD) simulation of the electric field strength 
shows that the weak points locate near the gate and drain edges 
(figure 2(h)), which agrees well with the burned-out device in 
the inset of figure 2(g) and other reports [8, 9, 15, 16]. The 
output curves of the 156 devices are summarized in figure 2(e). 
Figure 2(f) shows the wafer map of kink voltage (Vkink) values 
for these HVTFTs, with an average Vkink of 99.64 V and σ of 
5.21 V (figure 2(i)). The σ of ION and Vkink in these HVTFTs is 

Figure 3. (a) The proximity exposure method with Cr mask on the backside of the glass substrate. (b) The penumbral region increases with 
the distance between the mask and photoresist. TCAD simulation of normalized exposure intensity with 500 µm-thick (c) and 170 µm-
thick (d) glass substrates. Self-aligned photolithography experiments with 500 µm-thick (e) and 170 µm-thick (f) glass substrates. Both the 
simulations and experiments indicate that 170 µm is better than 500 µm. (g) Exposure intensity with high and low exposure doses. (h) The 
penumbral regions of high and low dose exposure intersect with the threshold dose, and the distance between the two intersection points 
gives the offset length.
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much smaller than those in our previous report [9], indicating 
that the self-aligned photolithography technology can improve 
the uniformity of the high-voltage devices.

3.3. Self-aligned photolithography

The principle of the self-aligned photolithography is pre-
sented in figure  3. Distinguished from conventional self-
aligned photolithography technologies which utilized the 
opaque gate on the front side of the transparent substrate 
as the mask in the backside exposure process [27, 28], the 
opaque Cr mask is introduced onto the backside of the glass 
substrate to facilitate the proximity exposure method [29–31] 
as shown in figure 3(a). In the proximity exposure method, 
there is a penumbral region with the length δ  =  k(λd)1/2 [32], 
where k is a process-related parameter, the typical value of 
which is around 1, λ the wavelength of the exposure light and 
d the distance between mask and the photoresist, i.e. the glass 
thickness in this case. Figure 3(b) shows the simulated light 
intensity profile through the Cr mask with various glass thick-
ness. The penumbral region length increases monotonously 
with the glass thickness, theoretically δ  ≈  0.02 µm, 0.60 µm, 
1.91 µm, 6.04 µm and 19.10 µm for d  =  0.001 µm, 1 µm, 
10 µm, 100 µm and 1000 µm. Two kinds of glasses with a 

thickness of 500 µm and 170 µm were employed in the sim-
ulations and experiments to verify the influence of the sub-
strate thickness on the proximity exposure process. There are 
profounder fluctuations, corresponding to larger penumbral 
region, in the thicker substrate (figure 3(c)) than in the thinner 
one (figure 3(d)). Accordingly, a higher pattern accuracy will 
be achieved in the case of the thinner substrate (figure 3(f)) 
compared with the thicker one (figure 3(e)). Since 170 µm is 
thinner than the commonly used 0.5 mm–0.7 mm in industrial 
production lines, a small-area wafer was more preferred in the 
self-aligned technology to avoid the fragmentation issue. On 
the base of a 170 µm thick glass substrate, high and low dose 
exposures were simulated (figure 3(g)). Obviously, intensity 
in the high dose case changes faster than that in the low dose 
case. Supposing the threshold of the exposure intensity is 0.8 
(the minimum intensity of fully exposure), the width of the 
underexposed photoresist, which remains after development, 
would differ by 2  ×  offset length in the two cases (figure 
3(h)). The presented self-aligned photolithography tech-
nology employs two times of backside exposure process, the 
first for the gate etching (step 3) and the second for the source 
drain lift-off (step 8). By modulating the exposure dose in the 
two exposure processes, the offset region with desired length 
between the gate and drain could be achieved as expected.

Figure 4. (a) TCAD simulation of the fabrication process in step 3 with high (i) and low (ii) dose exposure. The high dose exposure 
narrows the photoresist by widening the fully exposed area. The photoresist is used as the mask in subsequent etching, forming GZO gate 
with short (iii) and long (iv) lengths. (b) Microscope image of HVTFT in step 8. (c) Transfer curves of HVTFTs with 2 µm and 4 µm offset 
lengths, respectively, in which the on-state current of the former is one order higher than the latter. (d) Output curves of HVTFTs with 2 µm 
and 4 µm offset lengths, respectively, in which the kink voltage of the former is 20 V smaller than the latter. (e) TCAD simulation of the 
electric field strength along the cutline near the channel dielectric interface. The 4 µm offset device has much smaller electric field than the 
2 µm one.
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3.4. Modulation of offset length

Furthermore, the offset length could be modulated through 
changing the backside exposure dose in step 3. According to 
the analysis in figures 3(g) and (h), higher dose widens the fully 
exposed area, and thus leading to narrower photoresist after 
development as shown in the simulation (figure 4(a)(i) and (ii)). 
Subsequently, etching and stripping (step 4) were conducted 
to form GZO gates with length of approximately 12 (figure 
4(a)(iii)) and 16 µm (figure 4(a)(iv)). After the second self-
aligned photolithography in step 8, the photoresist pattern with 
the feature length of 20 µm was formed (figure 4(b)), which 
defines the channel length of the HVTFT. After completing the 
following steps, the self-aligned HVTFTs with approximately  
2 µm and 4 µm offset lengths are realized. Figure 4(c) shows 
the transfer curves, in which the on-state current of the 2 µm 
offset HVTFT is one order larger than that of the 4 µm one. 
In the output curves (figure 4(d)), both devices show typical 
HVTFT performance with three distinguishable regions as in 

figure 2(g). However, the 2 µm offset device shows a smaller 
Vkink of 95 V, about 20 V smaller than that in the 4 µm one. 
This phenomenon is also found in other reports [5, 9, 14, 
15, 19], and can be explained by the device physics simula-
tion. The electric field is nearly constant in most of the offset 
region [9, 33, 34], which means that high electric field strength 
could be mitigated by longer offset region. The introduction of  
4 µm offset region results in a reduced electric field of  
0.49 MV cm−1 near the gate edge, which is about half of that in 
the 2 µm offset device as can be seen in figure 4(e). As a trad-
eoff, the on-state current is reduced due to the series resistance 
of the offset region. Therefore, the offset length should be care-
fully designed to delicately balance between Vkink and ION.

3.5. High-voltage inverters

To explore the application of the self-aligned photolithog-
raphy technology in high-voltage logic circuits, HV inverters 

Figure 5. (a) Structure diagram of an HV inverter which is composed of an HVTFT drive and an HVD load. (b) I–V characteristics of 
HVD with rectification ratio of ~106 and VBR more than 110 V. (c) Voltage-transfer characteristics of the HV inverter with a maximum 
operation voltage of 80 V. Inset is the voltage gain. (d) Low-voltage operation of the HV inverter down to 1 V. Inset is the voltage gain.
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are constructed with an HVTFT drive and an HVD load (figure 
5(a)). Compared with other HV inverters which require off-
chip resistors [5, 6, 10], this work employs the on-chip HVD as 
the load for better scaling down and integration. The I–V char-
acteristics of the HVD shows a rectification ratio of ~106 and 
VBR more than 110 V. Figure 5(c) shows the voltage-transfer 
characteristics of the HV inverter with VDD ranging from  
10 V to 80 V in 10 V step. Inset shows that the voltage gain 
is approximately 5. In addition, the HV inverter also allows 
low-voltage operation (figure 5(d)) down to 1 V. The transient 
response performance of the HV inverters is discussed in the 
supporting information, figure S3. The successful fabrication 
of HV inverters with the presented self-aligned photolithog-
raphy technology demonstrates its feasibility in promising 
high-voltage circuits.

4. Conclusion

We have presented a self-aligned photolithography technology 
for the fabrication of fully-transparent HVTFTs, HVDs and 
HV inverters to improve their uniformity. Optical simulation 
of the photolithography process was performed to explain 
the principle of the proximity exposure method. The 170 µm 
thick substrate was proved to be better than the 500 µm sub-
strate through simulations and experiments. Furthermore, by 
modulating the exposure dose, the offset length, and thus the 
electrical performance, were delicately controlled. Finally, 
HV inverters were constructed with an HVTFT drive and an 
on-chip HVD load. The successful fabrication of HVTFTs, 
HVDs and HV inverters demonstrates the feasibility and 
huge potential of the presented self-aligned photolithography 
technology.
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